skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stamatoyannopoulos, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Complex disorders are caused by a combination of genetic, environmental and lifestyle factors, and their prevalence can vary greatly across different populations. The extent to which genetic risk, as identified by Genome Wide Association Study (GWAS), correlates to disease prevalence in different populations has not been investigated systematically. Here, we studied 14 different complex disorders and explored whether polygenic risk scores (PRS) based on current GWAS correlate to disease prevalence within Europe and around the world. A clear variation in GWAS-based genetic risk was observed based on ancestry and we identified populations that have a higher genetic liability for developing certain disorders. We found that for four out of the 14 studied disorders, PRS significantly correlates to disease prevalence within Europe. We also found significant correlations between worldwide disease prevalence and PRS for eight of the studied disorders with Multiple Sclerosis genetic risk having the highest correlation to disease prevalence. Based on current GWAS results, the across population differences in genetic risk for certain disorders can potentially be used to understand differences in disease prevalence and identify populations with the highest genetic liability. The study highlights both the limitations of PRS based on current GWAS but also the fact that in some cases, PRS may already have high predictive power. This could be due to the genetic architecture of specific disorders or increased GWAS power in some cases. 
    more » « less
  2. Background Myasthenia gravis (MG) is a rare autoimmune disorder affecting the neuromuscular junction (NMJ). Here, we investigate the genetic architecture of MG via a genome-wide association study (GWAS) of the largest MG data set analysed to date. Methods We performed GWAS meta-analysis integrating three different data sets (total of 1401 cases and 3508 controls). We carried out human leucocyte antigen (HLA) fine-mapping, gene-based and tissue enrichment analyses and investigated genetic correlation with 13 other autoimmune disorders as well as pleiotropy across MG and correlated disorders. Results We confirmed the previously reported MG association with TNFRSF11A (rs4369774; p=1.09×10 −13 , OR=1.4). Furthermore, gene-based analysis revealed AGRN as a novel MG susceptibility gene. HLA fine-mapping pointed to two independent MG loci: HLA-DRB1 and HLA-B . MG onset-specific analysis reveals differences in the genetic architecture of early-onset MG (EOMG) versus late-onset MG (LOMG). Furthermore, we find MG to be genetically correlated with type 1 diabetes (T1D), rheumatoid arthritis (RA), late-onset vitiligo and autoimmune thyroid disease (ATD). Cross-disorder meta-analysis reveals multiple risk loci that appear pleiotropic across MG and correlated disorders. Discussion Our gene-based analysis identifies AGRN as a novel MG susceptibility gene, implicating for the first time a locus encoding a protein (agrin) that is directly relevant to NMJ activation. Mutations in AGRN have been found to underlie congenital myasthenic syndrome. Our results are also consistent with previous studies highlighting the role of HLA and TNFRSF11A in MG aetiology and the different risk genes in EOMG versus LOMG. Finally, we uncover the genetic correlation of MG with T1D, RA, ATD and late-onset vitiligo, pointing to shared underlying genetic mechanisms. 
    more » « less
  3. Abstract The medieval history of several populations often suffers from scarcity of contemporary records resulting in contradictory and sometimes biased interpretations by historians. This is the situation with the population of the island of Crete, which remained relatively undisturbed until the Middle Ages when multiple wars, invasions, and occupations by foreigners took place. Historians have considered the effects of the occupation of Crete by the Arabs (in the 9th and 10th centuries C.E.) and the Venetians (in the 13th to the 17th centuries C.E.) to the local population. To obtain insights on such effects from a genetic perspective, we studied representative samples from 17 Cretan districts using the Illumina 1 million or 2.5 million arrays and compared the Cretans to the populations of origin of the medieval conquerors and settlers. Highlights of our findings include (1) small genetic contributions from the Arab occupation to the extant Cretan population, (2) low genetic contribution of the Venetians to the extant Cretan population, and (3) evidence of a genetic relationship among the Cretans and Central, Northern, and Eastern Europeans, which could be explained by the settlement in the island of northern origin tribes during the medieval period. Our results show how the interaction between genetics and the historical record can help shed light on the historical record. 
    more » « less